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Abstract. Texture measures offer a means of detecting targets in back-
ground clutter that has similar spectral characteristics. Our previous
studies demonstrated that the ‘‘fractal signature’’ (a feature set based on
the fractal surface area function) is very accurate and robust for gray-
scale texture classification. This paper introduces a new multichannel
texture model that characterizes patterns as 2-D functions in a Besov
space. The wavelet-based fractal signature generates an n-dimensional
surface, which is used for classification. Results of some experimental
studies are presented demonstrating the usefulness of this texture mea-
sure. © 1998 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(98)01001-0]
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1 Introduction

The accurate detection and discrimination of texture
mains one of the most fundamental problems in compu
vision. Regardless of whether the application is target
tection, object recognition, texture segmentation, or e
detection, we must be able to recognize and label homo
neous texture regions within an image and differentiate
tween distinct regions. We can safely state that scene
mentation is one of the most important and fundamen
tasks of early vision. Moreover, the solution to ma
vision-related problems depend on an efficient image s
mentation to arrive at correct solutions. Thus the devel
ment of accurate texture description models is crucial
the solution of these problems. The texture measure
sented in this paper, which we call the wavelet-based f
tal dimension, is a promising alternative to current textu
measures and overcomes some of their limitations.

2 Background

The computational processing of textures can be divi
into two main problem areas, segmentation and classifi
tion. Texture classification consists of taking whole imag
and grouping them into texture classes or categories, s
to be able to rapidly detect whether two texture samples
alike or dissimilar. Texture segmentation is, on the ot
hand, the process by which an image is partitioned i
regions of homogeneous texture patterns. Segmentation
more complex problem than classification since it involv
discriminating textures and being able to tell them ap
But it also involves the optimal detection of boundari
between nonhomogeneous texture regions.

2.1 Texture Metrics

Two questions that arise from the previous definitions
what is meant by homogeneous or dissimilar texture
166 Opt. Eng. 37(1) 166–174 (January 1998) 0091-3286/98/$10.
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gions and how this can be expressed quantitatively. T
answer to the first question is obvious due to the fact t
for humans it is natural and easy to classify textures or
segment textured images into homogeneous regions. Th
fore this should be the standard that determines the ho
geneity of two textures. The second question, on the o
hand, does not have a straightforward answer. Comp
vision researchers have for many years attempted to m
the basic components of the human visual system to c
ture our visual abilities. As a result of these efforts, seve
models have risen to try and measure quantitatively
intrinsic and unique properties of texture patterns. Most
these models consist of mapping texture patterns to
n-dimensional feature space from which some label
technique can be applied to determine which texture p
terns can be categorized as similar or not similar.

Statistical modeling approaches for textures are qu
popular. Stationary statistical models are used to calcu
parameters that are unique to each texture’s pixel va
distribution. Typical models used are nonlinear Mark
random fields1 ~MRFs! and Gauss MRFs.

Probably the most popular approach to quantizing t
ture properties is currently the usage of Gabor filters
perform feature extraction. Gabor filters are modulated
nusoids of the form

G~x,s,A!5
1

~2ps!1/2 exp~2x2/2s!eiAx, ~1!

whereA is the frequency of the sinusoid ands determines
the width of the Gaussian envelope. These filters are kno
to have good discrimination capabilities for many types
textures. References 2 to 9 use Gabor filtering as their
00 © 1998 Society of Photo-Optical Instrumentation Engineers
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Espinal et al.: Wavelet-based fractal signature analysis . . .
ture metric of choice. The elements of the feature vect
created represent the energy of the texture at a partic
frequency and orientation.

Wavelets are very much related to Gabor filters in t
they provide localized space-frequency information fo
signal. In particular, 2-D wavelet transforms provide fr
quency and orientation content information for 2-D signa
Wavelets have to the advantage that they partition the
quency plane precisely, unlike Gabor filters. But, Gab
filters provide complete control over orientation unlike t
more limited control offered by 2-D separable wave
transforms. Wavelet-based methods for texture mode
and feature extraction have generally focused on the u
zation of the packets or frames of the Wavelet transfo
and using these to obtain features with which to classify
segment a textured image. References 10 and 11 are
examples of these methods.

This paper introduces a novel texture metric that can
used for classification, segmentation, or target recogni
based on the fractal dimension and the 2-D wavelet tra
form. The wavelet-based fractal dimension provides a
feature extraction method that results in very good text
discrimination capabilities.

3 Wavelet-Based Fractal Dimension

3.1 Fractal Signature

Texture measures offer a means of detecting object
background clutter that has similar spectral characteris
The ‘‘fractal signature’’~a feature set based on the frac
surface area function! was shown to be very accurate an
robust in gray-scale texture classification.12–14The strength
of applying fractal theory to texture analysis lies in t
multiresolution nature of texture, which is the basis of fra
tals.

Peleg et al.14 introduced a texture analysis method th
measures the area of the gray-level surface at varying r
lutions. For a pure fractal gray-level image, this is given

A~e!5Fe~22D !, ~2!

wheree is the resolution of the gray levels in the image,D
is a fractal dimension,15 andF is a constant. The change i
measured area with the changing scale is used as the fr
signature of the texture. The gray-level surface area is m
sured by covering the surface in 3-D space with a blan
of thickness 2e, whose upper surface and lower surface
derived using local max and min functions applied to t
image. The surface area can be computed from the vol
occupied by the blanket. This will give a measure of t
oscillations of the underlying surface for each value ofe,
which is used to generate the fractal signature.

Argoul et al.16 were the first to propose the use of th
wavelet transform for fractal image description. They us
the transform as a microscope to capture the scaling p
erties of fractals. Mallat has shown that texture analysis
be done with the wavelet representation using a fractal
mension derived from the power function spectra.17 This
type of analysis can be merged with the fractal signat
approach.12,13 Although the fractal signature can be com
puted in parallel, there is a large computational overhea
the max and min functions that are the basis for the con
r
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hull support of the image surface. An alternative and mu
more efficient approach lies in the computation of a frac
dimension within theg wavelet coefficient spaces where
measure of texture directionality is also obtained. In ad
tion, multichannel texture models can be built using t
method found in Ref. 13.

3.2 Definition of the Wavelet-Based Fractal
Dimension

The fractal dimension of a compact setE is given by

dim ~E!5 lim
e→`

log N ~e,E !

log~1/e!
, ~3!

whereN (e,E) is the number of balls of radiuse that cover
the setE. This measure gives a rudimentary geometric d
scription of a set and how complicated it looks. Thus
intuitively lends itself to consideration as an accurate t
ture metric. See Refs. 18 and 19 for more details on
mathematical properties of the fractal dimension.

Humans cue to many features when segmenting a sc
One such feature is the degree of smoothness that a pa
demonstrates. Thus we can use this feature to try and m
sure a texture quantitatively. From the field of function
analysis it is known that functions can be categorized
their degrees of smoothness. Functions can be catego
into functional spaces according to their degrees of smo
ness. Besov spaces offer one such way to classify funct
by their mathematical smoothness, which is very close
our notion of visual smoothness.

Define w to be the space of functions belonging toC`

that decay rapidly at̀ . A Besov spaceBp
a,q(R) is the col-

lection of all functionsf Pw such that

i f iB
p
a,q~R!5iF* f iLp1F (

n51

`

~2naicn* f iLp!qG1/q

,`, ~4!

where aPR, 1<p<` and 1<q<`. Here cn

52nc(2nx) is a wavelet-like function that decays at infin
ity formed by dilations of the basic functionc, andFPw
is a smooth scaling function. The Besov space norm m
sures how smooth a function is. If the norm off is high, it
indicates the presence of many high-frequency compon
in f and thus a non-smooth function. See Refs. 18 and
for more details on the mathematical properties of Bes
spaces.

The results in Ref. 18 show that a fractal dimension
the graph off PBp

a,q(R) can be expressed using its wave
coefficients. In other words, the smoothness of a functio
intrinsically connected to the geometric characteristic of
graph of that function and hence to its fractal dimension

The dyadic wavelet transform of a functionf PL2(R) is
given by*

*See Ref. 20 for more a more complete introduction to the wavelets
multiresolution analysis.
167Optical Engineering, Vol. 37 No. 1, January 1998
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Espinal et al.: Wavelet-based fractal signature analysis . . .
~W n f !~b,n!:5
1

A2n E2`

`

f ~x!cS x2b

2n Ddx, ~5!

wherec(x) is typically referred to in the literature as th
mother wavelet and is a compactly supported function t
decays rapidly to zero at infinity. This transform is useful
providing localized space-frequency information with
certain frequency scales of a function and can also be
terpreted as providing smoothness information:

dim @graph~ f !#5 lim
n→`

log1 ( uI u522nuI u21/2u@W n~ f !# I u
log1 2n

11, ~6!

where@W n( f )# I are the wavelet coefficients of the func
tion f in the dyadic intervalI , whereuI u522n. For a 2-D
function f :@0,1#2→R, we must use the 2-D separab
wavelet transform given by

~W n,u f !~a,b!:

5
1

A2n E2`

` E
2`

`

f ~x,y!cuS x2a

2n ,
y2b

2n Ddx dy. ~7!

The waveletcu is one of the three possible mother wav
lets that extract horizontal, diagonal,or vertical orientati
information from the functionf (x,y). Using this definition,
we can extend the fractal dimension equation to 2-D fu
tions f (x,y):

dim @graph~ f !#

5 lim
n→`

log1 ( uAu5222nuAu21/2u@W n,u~ f !~a,b!#u
log1 2n 11,

~8!

whereu denotes which of the horizontal, vertical, or dia
onal channels of the 2-D wavelet transform the coefficie
belong to, andA is analogous toI except that it is a 2-D
patch of areauAu5222n. Thus we can think of the 2-D
wavelet-based fractal dimension for a functio
f :@0,1#2→R as a vector belonging toR3 corresponding to
the three different orientations of the wavelet transform

Fig. 1 Computational structure of a discrete wavelet transform;
h@n# and g@n# are low-pass and high-pass filters, respectively.
Three orientation channels are the output of each level of decom-
position.
168 Optical Engineering, Vol. 37 No. 1, January 1998
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4 Implementation of the Wavelet-Based Fractal
Dimension

To use the fractal dimension as a feature metric, we mu
compute it for signals of finite length, i.e., digitized images
The fact that we are dealing with discrete signals mea
that we do not have infinite levels of resolution. This mean
we only have a finite number of valuesn with which to try
and approximate this limit. Thus we will use the sequenc
of values given by different values ofn and the different
orientations as a feature vector for the image subregion f
which we are trying to compute a fractal dimension.

We evaluate and compute for each image pixel the fo
lowing formula:

Du,n~p!5
log1$(uPW u,n@N ~p!#uuuA22n%

log1~2n!
, ~9!

whereN (p)PRm3m is the image subwindow surrounding
pixel p representing the function for which we are comput
ing a fractal dimension, andnP$0,...,log2 m% are the levels
of resolution of the discrete wavelet transform of the sub
image. Figure 1 shows the basic steps of iterative filterin
and downsampling involved in computing the discret
wavelet transform of a 2-D signal.

To visualize the discrimination properties of our pro
posed metric, we computed the wavelet-based fractal d
mension for 40 patches of Brodatz-like texture samples a
averaged them for each orientation channel. Figure 2 sho
the results of the plot in HDV space† for the 40 Brodatz-
like textures in Fig. 3.

5 Experimental Results

We performed two basic types of experiments to test th
applicability of our texture metric. We first used it to do
simple image segmentation and compare our image resu
to the commonly used Gabor filter metrics. Then we pro
ceeded to use them in targeting experiments from which w
also show the resulting images.

†Horizontal, diagonal, and vertical channels of the 2-D wavelet transform

Fig. 2 Sample of 40 Brodatz-like textures in HDV space.
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Fig. 3 Collage of 40 Brodatz-like textures.
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5.1 Application to Segmentation

To test the discrimination ability of the wavelet-based fra
tal dimension, we decided to compare its feature extrac
abilities to Gabor filters. For our experiments we used a
set of 2563256 8-bit images composed of different textu
patches taken from the work done in Refs. 3 and 4.
each image, we computed the wavelet-based fractal dim
sion feature vectors using either a 16316 or a 32332 win-
dow size and using the coefficients of up to the first th
levels of the discrete wavelet transform decomposition. T
number of levels of the wavelet transform used in the f
ture extraction depended on the window size used; tha
for smaller window sizes, a smaller number of levels of t
transform were utilized due to the more limited resolutio
It is important to note that these window sizes depend
the size of the textures being analyzed and they were
termined manually. For all of our experiments we used
five-tap biorthogonal wavelet shown21 in Table 1. We also
extracted features using Gabor filters for four different o
entations and three different center frequencies followed
a pixelwise nonlinear transform and the local absolute
eraging described in Ref. 22. We proceeded to segm
both feature sets using the simple and well-knownk-means
clustering technique,23 using the feature vectors only an
no spatial coordinate information. We observed in gene
that our feature metric differentiated better between vi
ally close textures than the Gabor filters. This result is e
more interesting when we take into account the fact that
dimensionality of our feature space was at most 9 while
Gabor metric was 12. So while the running times of t
feature extraction procedures are about the same, the

Table 1 Coefficients for the low-pass and high-pass filters of the
biorthogonal wavelet used in the experiments.

Low-pass filter 0.353553, 0.707107, 0.353553

High-pass filter 20.176777, 0.353553, 1.06066, 0.353553,

20.176777
t

-

,

-

t

-

tering algorithm module will undoubtedly take longer for
feature space of higher dimensionality.

Figure 4 demonstrates that the fractal-signature-ba
method is able to differentiate better between the woo
cloth ~center! and the water~far right!. It is interesting to
observe that the border between these two textures is
very clear and the fractal-based features are able to de
it. The Gabor filters also were too sensitive to the wo
texture at the bottom and thus over segmented it. Figur
shows that our metric is better at distinguishing betwe
the water and the pigskin texture. The borders of the p
forated metal~center! are also much better localized. Th
speckles in our segmentation results show that our metr
quite sensitive to noise. But these limitations can be ov
come through the use of more sophisticated clustering
proaches like the ones in Refs. 1, 3, and 4.

The results in Fig. 6 show again that Gabor filters cou
not differentiate between two similar textures, the water
the center and the particle board at the bottom. It can
observed in this image that the border between these
textures is not readily discernible and our metric is a
affected. The metal texture at the top is oversegmented
the Gabor filters, probably due to the overall change
brightness across the texture. Figure 7 shows some m
speckle noise in the segmentation image of the wave
based fractal signature. But the Gabor filter output crea
large spots in several of the textures due to brightn
changes in the textures.

The segmentation results in Fig. 8 shows almost ide
cal output from both our metric and Gabor filters. The mo
obvious differences are the better circle edge localizat
and more speckle noise in our metric segmentation. Fig
9 shows a more clean segmentation using Gabor filters
our metric. The poor boundary detection between
woolen cloth~left! and the coarse sand~bottom! is most
probably due to their very close proximity in HDV spac
~see Fig. 3!.

Figure 10 shows the percentage of mislabeled pixels
each of the wavelet-based fractal dimension segmentati
Note again that we are not utilizing a sophisticated clus
169Optical Engineering, Vol. 37 No. 1, January 1998
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170 Optical Engi
Fig. 5 (a) Test image 2, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16316 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

Fig. 6 (a) Test image 3, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16316 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

Fig. 7 (a) Test image 4, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16316 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

Fig. 4 (a) Test image 1, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16316 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.
neering, Vol. 37 No. 1, January 1998
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Fig. 8 (a) Test image 5, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16316 and first two levels of wavelet transform decomposition), (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

Fig. 9 (a) Test image 6, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 32332 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

Fig. 10 Pixel error percentage results for the six segmentation examples.
171Optical Engineering, Vol. 37 No. 1, January 1998
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Fig. 11 Polarization, reflectance, and thermal IR band image.
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ing technique. Better results can be obtained by incorpo
ing spatial constraints into the clustering technique by d
couraging small blocks of homogeneous pixels. Ene
minimization techniques like simulated annealing can
complish this but are very computationally intensive. T
authors of Refs. 3 and 4 have overcome some shortcom
of this energy minimization method.

5.2 Automatic Target Detection

Our studies with the texture mosaics revealed the link
tween the wavelet-based fractal signature and the smo
ness of a texture. Man-made objects such as targets te
be characterized by linear/angular features that show
well in the wavelet detail channels, thus leading to re
tively high values for the signature at every scale. The fr
tal signature of the target will be mixed with that of th
background clutter, but to the first order this will be a a
ditive mixing of signatures.24

All images had a spatial resolution of 5123512 pixels
and 8 bits of gray scale. Although targets are made up
number of different textures, their combination should g
a unique signature. Rather than deriving a signature
each pixel, as was done in the mosaic study, we deri
signatures for larger windows that encompass the targe

In the first study, we used a series of registered ima
that were taken in the polarization, reflectance and ther
IR bands shown in Fig. 11. The targets are small cylindri
objects that are partially embedded in the ground.
172 Optical Engineering, Vol. 37 No. 1, January 1998
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The total area of the targets with respect to the field
view ~FOV! was 0.05%. In addition, their spectral sign
tures were extremely close to that of the vehicular tra
that were also present. An approach based on threshol
yielded a probability of false alarmPFA of 34% without
further processing. Analysis of the thermal band using
fractal signature derived from theg channels of the bior-
thogonal closed set wavelet transform with an image
composition of 64 subimages gave a probability of det
tion PD of 83% for aPFA of 0%, and aPD of 100% with a
PFA of 10%. Classification accuracy of the algorithm
slightly increased if the polarization and thermal images
fused using a possibilistic OR operation in theg channels
before texture analysis. This method produced aPD of
100% with aPFA of 7% and compares favorably with
previously reported neural-network-based technique.25

In the second study, we used a series of images from
China Lake thermal IR database. These include both l
and nautical examples. The target signatures are kn
within bandpass limits in the three detail channels. A fix
size window of size 434 is used to scan the input image
the lowest level of the wavelet coefficient space using
texture measure previously defined in this paper. This
followed by a simple region-growing process, which giv
rise to the bounding rectangle around the target.

The first series had land targets hidden in vegetation
a target without any cover. These are shown in Fig.
Fig. 12 Land target examples.
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Fig. 13 Sea target examples: (a) hot horizon target and (b) target without any cover.
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where we have boxed the detected targets in each sc
Despite the high amount of clutter in each scene, the tar
were successfully detected. The second series had a n
cal target hidden in the ‘‘hot’’ horizon and a target witho
any cover. These are shown in Fig. 13, where we h
boxed the detected targets in each scene. The target in
left image was detected despite extremely low contrast
tween itself and the sky return.

6 Conclusions and Future Work

Clearly the wavelet-based fractal dimension offers a n
and promising way to measure texture features. Its ab
to distinguish boundaries between textures that even
humans are not clear indicates that it is able to cue
properties of textures that are hard for us to detect.

In all of our experiments, we empirically set the numb
of levels of the wavelet decomposition to use and the
spective window sizes. This, of course, is not the m
efficient approach. For most images a window size of
316 and information from the first two levels of the wav
let decomposition were used for feature extraction. But
larger sized textures, such as beans or woven thatc
larger window size proved more effective. Thus an ad
tive approach that determines the optimal value for th
two parameters would be desirable.
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